儿童医院治疗癫痫新药-全国治癫第一的儿童医院
羔羊头晕吃什么药
1.冠心病:干山楂30克,决明子10克,白菊花10克,加水稍煎当茶饮,每日一剂,半月愈.
2.慢性干病:茵陈1两,大枣10个,白菊花10克,水煎服,每天一剂,连续服100天痊愈.
3:肺结核:活乌龟一只,用泥包住,用暗火,慢火烧焦去泥,研成龟粉,开水冲服,每天三次,每次一钱,效果良佳,一百日即愈.(忌狗肉酸辣食物)
4:阳痿不举:活虾2个,蛤蚧一点,一棵整葱白,把葱白花开,再把活吓,蛤蚧夹在葱里烤干研面,睡前服下,当晚见效.
5:肝硬化腹水;纯绿豆面一斤,猪胆4个,用胆汁调绿面成丸,如绿豆大小,每天三次,每次6丸特效.
6肺气肿:仙人掌2两,去皮切片,香油炸黄,加水一碗,烧开七次,剩半碗即可,每日暮途穷3次,7天痊愈.
7全身浮肿;小麦麸炒黄1斤,加红糖拌匀,大枣汤冲服,每日2次,每次60克,连服15天即愈.
8肺炎:鱼星草一把,炖七个荷包鸡蛋吃,每日一次,十天愈.
9:高血压:每天用八个干香蕉皮,煮开水灌瓶内当茶喝,连续喝八天,不能减断,不级少于六十四个香蕉皮,连续喝八天痊愈.
10:糖尿病:大白公鸡一只,杀掉去肠杂,内加陈醋四两,不加油盐,炖熟吃肉喝汤,三天吃一只,轻者吃1-2只,重的吃三只痊愈.
11:肾炎:玉米须,西瓜皮,冬瓜皮,赤小豆各一两,煮汤代茶,持续服见奇效.
12:肾炎腹水:巴豆,黄蜡,用大针串在巴豆上,放蜡灯烧出油后,沾蜂黄蜡吃,每日2次,每次4粒,连吃半月痊愈.
13:羊羔风:落地羊羔一个全毛小鸡没出蛋壳的七个开白花的桃叶七片,共煮熟分几次吃完自愈.
14:前列腺炎:生南瓜籽二两,每天分3次吃完,连续吃七天痊愈.或用黄瓜尾巴五个切碎,加水250毫升,煮开后分二次,喝完半月愈.
15:血脂稠:每天用野山枣树根一尺长,短的也得配一尺长,玉米须干的一两,湿的二两,煮开水当茶喝,连续喝十五天痊愈,不再复发.
16:贫血症:菠菜3两,猪肝3两,牛羊肝各2两,不加油盐,炖熟吃,每日1付分3次吃完,半月愈.
17:胃病溃疡:白芨,疾黎各3钱,煎水服,每日一剂,煎两次服,外加2片痢特灵,七天痊愈.
18:食道炎:木灰一两,红枣七个,用火烧红开水捕灭,研灰粉,红糖水冲服,每日一次,连服七日痊愈.
19:慢性肠炎,每天4个个鸡蛋,分2次炒,炒时不加油盐水,连续吃半月特效.或用半熟的无花果,用单不用双,3,5,7,个都行,煮开水当茶喝,半月痊愈.
20:红白痢疾:早晨起床后,空腹吃七个变蛋,每日一次,三日痊愈.或用拉拉秧头七个,加红白糖各一两,煮开水1碗喝下痊愈.
21:低血压:甘草15克,桂枝30克,肉桂30克,水煎当茶大量喝,3日血压升高,少者2日恢复正常.
22:气管炎,哮喘:红砂糖1000克,乌贼骨500克,乌贼骨焙干研面,与砂糖拌匀,每日三次,每次20克,半月痊愈,不再复发.
23:肺结核,气管炎:羊肉500克,小麦仁(小麦去皮)60克,生姜9克,熬炖成稀粥,每天早晚各服一次,连服一月痊愈.
24:流精不止:强的松片,盐酸四环素片,维生素c片,每天服三次,每次各2片,开水送下,3天除根,不再复发.
25:梦遗滑精:荷叶100克,阴干辔烘干,研面,每日3次,每次十克,黄酒冲服,连服3日愈.
26:甲状腺肿大:浙贝母,海藻,牡蛎各12克,共研未每日2次,每次6克,饭前用白酒一蛊送下,7天愈.
27:胃下垂:猪肚半斤,白胡椒25克,同煮后,吃肚喝汤,每日一次,3日愈,胃下垂蹲着吃饭,时间长了就痊愈.
28:治疗翻胃:牛乳一杯,韭菜法半杯,生姜2调羹,和匀微火上沌温,空腹饮用,对反胃,噎隔,大便炽结,呕吐有特效.
29:经前腹痛:五灵脂10克,香附15克,炒香附时洒点酒,加水煎至300毫升,分早晚各服一次,两次痊愈.
30:白带污臭:鸡蛋打一小孔,放入白果2克,蒸熟吃,每日2个,7日痊愈.
31:阴痒滴虫病:蛇床子,苦参各15克,煮开水先熏后洗,两次痊愈.
32:乳腺炎:鲜葡萄叶500克,捣烂敷患处,每天换一次,连用15天痊愈.
33:慢性咽炎:干黄花菜30克,加水400毫升,文火煎烂,调入蜂蜜100毫升,每日3次,细嚼慢咽,7天痊愈.
34:十二脂肠溃疡:维生素b6,28片,痢特灵28片,用法:第一天吃四次各四片,第二吃三次各二片,第三天吃两次各两片,第四天吃一次各两片.休息一天再服一剂痊愈.
35:肾亏腰酸疼:黑豆50克,猪腰子4个,小茴香一钱,食盐少许,煮服吃,每日一剂,7剂痊愈.
36:肾炎蛋白尿:黄芪,玉米须,糯稻根各30克,炒糯米15克,煎水当茶饮,每天一会,15天痊愈.
37:肾结石:用拉拉秧根,煮开水当茶喝,连喝十天愈.
38:胆结石:鸡内金粉15克,冲泡3百毫升开水浸泡15分钟后,即可服用,然后慢跑步,以助结石排出,连服1月痊愈.
39:胆襄炎:玉米须2两,茵陈1两,山枳子5钱,广郁金5钱,水煎服,每日一剂,连服15剂痊愈.
40:头痛病:麦麸半斤,加醋炒热后,分两袋装,放头上顶,两袋互换顶凉了加热,12小时不出屋一次愈.
41:偏头痛:用萝卜汁滴鼻孔,仰卧,左边头疼滴右边鼻孔,右边头疼滴左边鼻孔,效果即佳.
42:腮腺炎:活泥鳅20条,洗净加白糖250克,拌15分钟,用滑液糖浆涂患处,干了即换,每日数次,3日痊愈.
43:急性扁桃体炎:取蝎尾一条,冰片0.3克,研细未,撒在小膏药中间,贴于患处,24小时更换一次,2至3次即愈.
44:头晕:用才出小鸡的蛋壳,焙干研面,红糖水冲服,每日3次,每次10克,3日愈.
45:鼻子出血:用七七芽一把,煮碗水喝下即愈.
46:鼻炎,鼻窦炎:河里青苔鲜的,从潮湿处刮下,装入瓶内,纱布卷青苔条,塞入鼻孔内,4小时更换一次,五日即愈,鼻塞得用10至15日痊愈.
47:耳内流脓:柳树上生的莪子2克,入老青瓦上焙干研面,香油调各,滴入耳内,用棉花堵住,一次愈神效.
48:耳鸣:生猪皮,香葱各100克,同剁烂,稍加食盐,蒸熟后一次吃完,连吃3天.对疲劳过度,上火引起的有效.
49耳聋:口内含一根大铁钉,耳上放块磁铁听,每天听六次,每次2分钟,数日愈.
50:口腔炎:用食盐水漱口,再含冰糖即可,如溃疡,取鸡蛋壳软膜贴之,疼痛立止,2次痊愈.
51:咳嗽无痰:冬瓜子一两,水豆腐一方,冰糖二两,炖熟服下有效如神,连用3次,不妨一试.
52:牙疼:两方,神经性火牙疼,用蛇皮焙黄研面,白酒调稀糊,点在牙上立即止痛,30年不发;蛀牙痛,把猪肚洗净,
刮一点粘膜,包在小沙布内,一次根治.
53:黑黄牙变白:乌贼骨研面,拌牙膏刷牙,洁白如玉.
54:洗眼仙方:中药青皮15克,皮硝15克,加六碗水煎至两碗水,装在瓶内,洗时倒点碗内,用小纱布棉花沾药水洗眼,每天三次,白内障和一切眼病洗之即愈.
55:百虫入耳:猫尿滴耳内,百虫自出来,大蒜擦猫鼻自尿.
56:鱼刺卡喉:鸭子倒提,取口中涎水咽下,鱼刺自化.别的骨头,用狗液咽下自化.
57:少白头变黑发:1:柏壳装枕头,枕头半年即黑.2:黑芝麻三两,何首乌三两,加糖水煮沸分三次吃完,连吃半月后,白发逐渐变黑.
58:脱发:取黑芝麻30克,大米100克,放锅内煮粥,当早饭食用,每天一剂,连服10天可再生新发.
59:吐血:用韭菜根捣汁,兑冷开水喝特效.
60:神经衰弱:浮小麦50克,甘草15克,大枣10克,酸枣仁15克,水煎服,每日一付即愈.
61
遗传的反义词是什么
释义 词目:遗传
拼音:yí chuán
基本解释 ⒈[heredity]:通过细胞染色体由祖先向后代传递的品质
遗传学
⒉[inheritance]:先人所流传下来的
详细解释 ⒈犹留传。
《史记·扁鹊仓公列传》:“ 庆 有古先道遗传 黄帝 、 扁鹊 之脉书,五色诊病,知人生。” 宋 林逋 《伤白积殿丞》诗:“遗传得谁脩阙下,孤坟应祇客江边。”《二刻拍案惊奇》卷十八:“这迷而不悟,却是为何?只因制造之药,其方未尝不是仙家的遗传。” 罗家伦 《是爱情还是苦痛》:“他说:‘我听得长辈说,女子总是靠丈夫的。’我好容易收来一点爱情,把他这一句遗传的话,又吓走了一大半。”
⒉指遗留下来的传闻。
北魏郦道元 《水经注·易水》:“余按遗传,旧迹多在 武阳 ,似不饯此也。” 明 李诩 《戒庵老人漫笔·陈同父》:“自是始欲纂集异闻,为《中兴遗传》,然犹恨闻见单寡,欲从先生故老详求其事。”
⒊谓生物体的构造和生理机能由上一代传给下一代。
艾思奇 《辩证唯物主义历史唯物主义》第四章:“在自然界中,吸引和排斥,阴电和阳电,化合和分解,遗传和变异等对立面的互相作用,也同样包含着斗争。”如:任何一种植物的后代与它的亲代总是基本相似的,这种现象叫做遗传。
⒋谓人的气质、品德、能力等后天的东西受上代的影响而在后代身上体现出来。
洪深《**戏剧的编剧方法》第四章:“即以气质而论,决不是一个人遗传有好的或坏的气质。” 郁达夫 《出奔》:“结婚之后的 董婉珍 ,处处都流露了她的这一种自父祖遗传下来的小节的伶俐。” 陈学昭《工作着是美丽的》上卷二四:“在精明能干这一点上,她的三个孩子都得了母亲的优良遗传。”
遗传:幸福在某种程度上是与生俱来的。人类“幸福感知点”的敏感程度有90%是由基因决定的,同时也取决于父母的正确见识、判断力以及良好的训练和教育。
特点 遗传算法是一类可用于复杂系统优化的具有鲁棒性的搜索算法,与传统的优化算法相比,主要有以下特点:[1]
1、 遗传算法以决策变量的编码作为运算对象。传统的优化算法往往直接决策变量的实际植本身,而遗传算法处理决策变量的某种编码形式,使得我们可以借鉴生物学中的染色体和基因的概念,可以模仿自然界生物的遗传和进化机理,也使得我们能够方便的应用遗传操作算子。
2、 遗传算法直接以适应度作为搜索信息,无需导数等其它辅助信息。
3、 遗传算法使用多个点的搜索信息,具有隐含并行性。
4、 遗传算法使用概率搜索技术,而非确定性规则。
应用概述 由于遗传算法的整体搜索策略和优化搜索方法在计算是不依赖于梯度信息或其它辅助知识,而只需要影响搜索方向的目标函数和相应的适应度函数,所以遗传算法提供了一种求解复杂系统问题的通用框架,它不依赖于问题的具体领域,对问题的种类有很强的鲁棒性,所以广泛应用于许多科学,下面我们将介绍遗传算法的一些主要应用领域:函数优化 函数优化是遗传算法的经典应用领域,也是遗传算法进行性能评价的常用算例,许多人构造出了各种各样复杂形式的测试函数:连续函数和离散函数、凸函数和凹函数、低维函数和高维函数、单峰函数和多峰函数等。对于一些非线性、多模型、多目标的函数优化问题,用其它优化方法较难求解,而遗传算法可以方便的得到较好的结果。组合优化 随着问题规模的增大,组合优化问题的搜索空间也急剧增大,有时在目前的计算上用枚举法很难求出最优解。对这类复杂的问题,人们已经意识到应把主要精力放在寻求满意解上,而遗传算法是寻求
遗传与生育
这种满意解的最佳工具之一。实践证明,遗传算法对于组合优化中的NP问题非常有效。例如遗传算法已经在求解旅行商问题、 背包问题、装箱问题、图形划分问题等方面得到成功的应用。
此外,GA也在生产调度问题、自动控制、机器人学、图象处理、人工生命、遗传编码和机器学习等方面获得了广泛的运用。
环境外因 就外因来看,从胎儿期到以后儿童成长的过程中,多物理、化学、生物学等有害因素会影响到儿童的大脑,造成精神心理的发育异常,如母亲妊娠期间接触有毒害的物质、服用某些药物、某些病毒感染、精神受刺激,胎内或产后窒息、高热抽搐、中毒(如铅中毒、一氧化碳中毒)、营养不良、脑外伤、脑炎、癫痫、神经发育不完善等许多疾病。影响儿童心理发展的另一重要因素是环境因素,主要是家庭教育和社会环境。家庭文化层次、经济水平、家庭结构、家庭关系、大人对孩子的抚养态度、幼儿园和学校的环境、老师的教育态度、社会文化背景、居住地区的环境等都能影响孩子的心理。
生物因素决定儿童智能发育的最大限度,而环境因素则决定智能发挥的程度,儿童先天情况良好但后天环境不良、教育落后,也可使孩子发育落后;反之,虽先天不足,但后天及时干预、教育得当也可使孩子得到良好的发展。良好的环境有助于孩子心理的健康发展,在民主、和睦、生活丰富多彩的环境中长大的孩子,大多自信、活泼、独立;而在专断、关系紧张、缺乏爱的环境中长大的孩子,容易形成胆小、自卑、孤僻或叛逆的性格。武汉市儿童医院康复科林俊主任分析,自2007年以来造成儿童高比例的心理行为问题原因有多方面,首先,由于独生子女的生活空间狭小,接触到同龄孩子机会较少,加上家长过度保护,身心得到锻炼的机会也较以前减少;另外,家长缺乏相关的儿童心理卫生知识,一方面对孩子的心理问题视而不见,一方面又不知如何正确引导孩子;同时儿童教育工作者也应注意对孩子充满爱心,一视同仁,多鼓励、表扬进步而不是挫伤孩子的自尊心。
现状 进入90年代,遗传算法迎来了兴盛发展时期,无论是理论研究还是应用研究都成了十分热门的课题。尤其是遗传算法的应用研究显得格外活跃,不但它的应用领域扩大,而且利用遗传算法进行优化和规则学习的能力也显著提高,同时产业应用方面的研究也在摸索之中。此外一些新的理论和方法在应用研究中亦得到了迅速的发展,这些无疑均给遗传算法增添了新的活力。遗传算法的应用研究已从初期的组合优化求解扩展到了许多更新、更工程化的应用方面。
儿童孤独症可能来自遗传
随着应用领域的扩展,遗传算法的研究出现了几个引人注目的新动向:一是基于遗传算法的机器学习,这一新的研究课题把遗传算法从历来离散的搜索空间的优化搜索算法扩展到具有独特的规则生成功能的崭新的机器学习算法。这一新的学习机制对于解决人工智能中知识获取和知识优化精炼的瓶颈难题带来了希望。二是遗传算法正日益和神经网络、模糊推理以及混沌理论等其它智能计算方法相互渗透和结合,这对开拓21世纪中新的智能计算技术将具有重要的意义。三是并行处理的遗传算法的研究十分活跃。这一研究不仅对遗传算法本身的发展,而且对于新一代智能计算机体系结构的研究都是十分重要的。四是遗传算法和另一个称为人工生命的崭新研究领域正不断渗透。所谓人工生命即是用计算机模拟自然界丰富多彩的生命现象,其中生物的自适应、进化和免疫等现象是人工生命的重要研究对象,而遗传算法在这方面将会发挥一定的作用,五是遗传算法和进化规划(Evolution Programming,EP)以及进化策略(Evolution Strategy,ES)等进化计算理论日益结合。EP和ES几乎是和遗传算法同时独立发展起来的,同遗传算法一样,它们也是模拟自然界生物进化机制的只能计算方法,即同遗传算法具有相同之处,也有各自的特点。目前,这三者之间的比较研究和彼此结合的探讨正形成热点。
遗传
1991年D.Whitey在他的论文中提出了基于领域交叉的交叉算子(Adjacency based crossover),这个算子是特别针对用序号表示基因的个体的交叉,并将其应用到了TSP问题中,通过实验对其进行了验证。
D.H.Ackley等提出了随即迭代遗传爬山法(Stochastic Iterated Genetic Hill-climbing,SIGH)采用了一种复杂的概率选举机制,此机制中由m个“投票者”来共同决定新个体的值(m表示群体的大小)。实验结果表明,SIGH与单点交叉、均匀交叉的神经遗传算法相比,所测试的六个函数中有四个表现出更好的性能,而且总体来讲,SIGH比现存的许多算法在求解速度方面更有竞争力。
H.Bersini和G.Seront将遗传算法与单一方法(simplex method)结合起来,形成了一种叫单一操作的多亲交叉算子(simplex crossover),该算子在根据两个母体以及一个额外的个体产生新个体,事实上他的交叉结果与对三个个体用选举交叉产生的结果一致。同时,文献还将三者交叉算子与点交叉、均匀交叉做了比较,结果表明,三者交叉算子比其余两个有更好的性能。
遗传
国内也有不少的专家和学者对遗传算法的交叉算子进行改进。2002年,戴晓明等应用多种群遗传并行进化的思想,对不同种群基于不同的遗传策略,如变异概率,不同的变异算子等来搜索变量空间,并利用种群间迁移算子来进行遗传信息交流,以解决经典遗传算法的收敛到局部最优值问题
2004年,赵宏立等针对简单遗传算法在较大规模组合优化问题上搜索效率不高的现象,提出了一种用基因块编码的并行遗传算法(Building-block Coded Parallel GA,BCPGA)。该方法以粗粒度并行遗传算法为基本框架,在染色体群体中识别出可能的基因块,然后用基因块作为新的基因单位对染色体重新编码,产生长度较短的染色体,在用重新编码的染色体群体作为下一轮以相同方式演化的初始群体。
2005年,江雷等针对并行遗传算法求解TSP问题,探讨了使用弹性策略来维持群体的多样性,使得算法跨过局部收敛的障碍,向全局最优解方向进化。一般算法
遗传
遗传算法是模拟达尔文的遗传选择和自然淘汰的生物进化过程的计算模型。它的思想源于生物遗传学和适者生存的自然规律,是具有“生存+检测”的迭代过程的搜索算法。遗传算法以一种群体中的所有个体为对象,并利用随机化技术指导对一个被编码的参数空间进行高效搜索。其中,选择、交叉和变异构成了遗传算法的遗传操作;参数编码、初始群体的设定、适应度函数的设计、遗传操作设计、控制参数设定五个要素组成了遗传算法的核心内容。作为一种新的全局优化搜索算法,遗传算法以其简单通用、鲁棒性强、适于并行处理以及高效、实用等显著特点,在各个领域得到了广泛应用,取得了良好效果,并逐渐成为重要的智能算法之一。遗传算法是基于生物学的,理解或编程都不太难。下面是遗传算法的一般算法:[2]初始种群 初始种群是从解中随机选择出来的,将这些解比喻为染色体或基因,该种群被称为第一代,这和符号人工
遗传
智能系统的情况不一样,在那里问题的初始状态已经给定了。评估适应度 对每一个解(染色体)指定一个适应度的值,根据问题求解的实际接近程度来指定(以便逼近求解问题的答案)。不要把这些“解”与问题的“答案”混为一谈,可以把它理解成为要得到答案,系统可能需要利用的那些特性。繁殖 带有较高适应度值的那些染色体更可能产生后代(后代产生后也将发生突变)。后代是父母的产物,他们由来自父母的基因结合而成,这个过程被称为“杂交”。下一代 如果新的一代包含一个解,能产生一个充分接近或等于期望答案的输出,那么问题就已经解决了。如果情况并非如此,新的一代将重复他们父母所进行的繁衍过程,一代一代演化下去,直到达到期望的解为止。并行计算 非常容易将遗传算法用到并行计算和群集环境中。一种方法是直接把每个节点当成一个并行的种群看待。然后有机体根据不同的繁殖方法从一个节点迁移到另一个节点。另一种方法是“农场主/劳工”体系结构,指定一个节点为“农场主”节点,负责选择有机体和分派适应度的值,另外的节点作为“劳工”节点,负责重新组合、变异和适应度函数的评估。
基本框架GA的流程图 GA的流程图如下图所示编码 遗传算法不能直接处理问题空间的参数,必须把它们转换成遗传空间的由基因按一定结构组成的染色体或个体。这一转换操作就叫做编码,也可以称作(问题的)表示(representation)。
评估编码策略常采用以下3个规范:
a)完备性(completeness):问题空间中的所有点(候选解)都能作为GA空间中的点(染色体)表现。
b)健全性(soundness): GA空间中的染色体能对应所有问题空间中的候选解。
c)非冗余性(nonredundancy):染色体和候选解一一对应。
目前的几种常用的编码技术有二进制编码,浮点数编码,字符编码,变成编码等。
而二进值编码是目前遗传算法中最常用的编码方法。即是由二进值字符集{0,1}产生通常的0,1字符串来表示问题空间的候选解。它具有以下特点:
a)简单易行;
b)符合最小字符集编码原则;
c)便于用模式定理进行分析,因为模式定理就是以基础的。适应度函数 进化论中的适应度,是表示某一个体对环境的适应能力,也表示该个体繁殖后代的能力。遗传算法的适应度函数也叫评价函数,是用来判断群体中的个体的优劣程度的指标,它是根据所求问题的目标函数来进行评估的。
遗传算法在搜索进化过程中一般不需要其他外部信息,仅用评估函数来评估个体或解的优劣,并作为以后遗传操作的依据。由于遗传算法中,适应度函数要比较排序并在此基础上计算选择概率,所以适应度函数的值要取正值.由此可见,在不少场合,将目标函数映射成求最大值形式且函数值非负的适应度函数是必要的。
适应度函数的设计主要满足以下条件:
a)单值、连续、非负、最大化;
b) 合理、一致性;
c)计算量小;
d)通用性强。
在具体应用中,适应度函数的设计要结合求解问题本身的要求而定。适应度函数设计直接影响到遗传算法的性能。初始群体的选取 遗传算法中初始群体中的个体是随机产生的。一般来讲,初始群体的设定可采取如下的策略:
a)根据问题固有知识,设法把握最优解所占空间在整个问题空间中的分布范围,然后,在此分布范围内设定初始群体。
b)先随机生成一定数目的个体,然后从中挑出最好的个体加到初始群体中。这种过程不断迭代,直到初始群体中个体数达到了预先确定的规模。
遗传操作 遗传操作是模拟生物基因遗传的做法。在遗传算法中,通过编码组成初始群体后,遗传操作的任务就是对群体的个体按照它们对环境适应度(适应度评估)施加一定的操作,从而实现优胜劣汰的进化过程。从优化搜索的角度而言,遗传操作可使问题的解,一代又一代地优化,并逼进最优解。
遗传操作包括以下三个基本遗传算子(genetic operator):选择(selection);交叉(crossover);变异(mutation)。这三个遗传算子有如下特点:
个体遗传算子的操作都是在随机扰动情况下进行的。因此,群体中个体向最优解迁移的规则是随机的。需要强调的是,这种随机化操作和传统的随机搜索方法是有区别的。遗传操作进行的高效有向的搜索而不是如一般随机搜索方法所进行的无向搜索。
遗传操作的效果和上述三个遗传算子所取的操作概率,编码方法,群体大小,初始群体以及适应度函数的设定密切相关。[3]选择 从群体中选择优胜的个体,淘汰劣质个体的操作叫选择。选择算子有时又称为再生算子(reproduction operator)。选择的目的是把优化的个体(或解)直接遗传到下一代或通过配对交叉产生新的个体再遗传到下一代。选择操作是建立在群体中个体的适应度评估基础上的,目前常用的选择算子有以下几种:适应度比例方法、随机遍历抽样法、局部选择法、局部选择法。
其中轮盘赌选择法 (roulette wheel selection)是最简单也是最常用的选择方法。在该方法中,各个个体的选择概率和其适应度值成比例。设群体大小为n,其中个体i的适应度为,则i 被选择的概率,为
显然,概率反映了个体i的适应度在整个群体的个体适应度总和中所占的比例.个体适应度越大。其被选择的概率就越高、反之亦然。计算出群体中各个个体的选择概率后,为了选择交配个体,需要进行多轮选择。每一轮产生一个[0,1]之间均匀随机数,将该随机数作为选择指针来确定被选个体。个体被选后,可随机地组成交配对,以供后面的交叉操作。交叉 在自然界生物进化过程中起核心作用的是生物遗传基因的重组(加上变异)。同样,遗传算法中起核心作用的是遗传操作的交叉算子。所谓交叉是指把两个父代个体的部分结构加以替换重组而生成新个体的操作。通过交叉,遗传算法的搜索能力得以飞跃提高。
交叉算子根据交叉率将种群中的两个个体随机地交换某些基因,能够产生新的基因组合,期望将有益基因组合在一起。根据编码表示方法的不同,可以有以下的算法:
a)实值重组(real valued recombination)
1)离散重组(discrete recombination);
2)中间重组(intermediate recombination);
3)线性重组(linear recombination);
4)扩展线性重组(extended linear recombination)。
b)二进制交叉(binary valued crossover)
1)单点交叉(single-point crossover);
2)多点交叉(multiple-point crossover);
3)均匀交叉(uniform crossover);
4)洗牌交叉(shuffle crossover);
5)缩小代理交叉(crossover with reduced surrogate)。
最常用的交叉算子为单点交叉(one-point crossover)。具体操作是:在个体串中随机设定一个交叉点,实行交叉时,该点前或后的两个个体的部分结构进行互换,并生成两个新个体。下面给出了单点交叉的一个例子:
个体A:1 0 0 1 ↑1 1 1 → 1 0 0 1 0 0 0 新个体
个体B:0 0 1 1 ↑0 0 0 → 0 0 1 1 1 1 1 新个体变异 变异算子的基本内容是对群体中的个体串的某些基因座上的基因值作变动。依据个体编码表示方法的不同,可以有以下的算法:
a)实值变异;
b)二进制变异。
一般来说,变异算子操作的基本步骤如下:
a)对群中所有个体以事先设定的编译概率判断是否进行变异;
b)对进行变异的个体随机选择变异位进行变异。
遗传算法导引入变异的目的有两个:一是使遗传算法具有局部的随机搜索能力。当遗传算法通过交叉算子已接近最优解邻域时,利用变异算子的这种局部随机搜索能力可以加速向最优解收敛。显然,此种情况下的变异概率应取较小值,否则接近最优解的积木块会因变异而遭到破坏。二是使遗传算法可维持群体多样性,以防止出现未成熟收敛现象。此时收敛概率应取较大值。
遗传算法中,交叉算子因其全局搜索能力而作为主要算子,变异算子因其局部搜索能力而作为辅助算子。遗传算法通过交叉和变异这对相互配合又相互竞争的操作而使其具备兼顾全局和局部的均衡搜索能力。所谓相互配合.是指当群体在进化中陷于搜索空间中某个超平面而仅靠交叉不能摆脱时,通过变异操作可有助于这种摆脱。所谓相互竞争,是指当通过交叉已形成所期望的积木块时,变异操作有可能破坏这些积木块。如何有效地配合使用交叉和变异操作,是目前遗传算法的一个重要研究内容。
基本变异算子是指对群体中的个体码串随机挑选一个或多个基因座并对这些基因座的基因值做变动(以变异概率P.做变动),(0,1)二值码串中的基本变异操作如下:
基因位下方标有*号的基因发生变异。
变异率的选取一般受种群大小、染色体长度等因素的影响,通常选取很小的值,一般取0.001-0.1。终止条件 当最优个体的适应度达到给定的阀值,或者最优个体的适应度和群体适应度不再上升时,或者迭代次数达到预设的代数时,算法终止。预设的代数一般设置为100-500代。
特点分析 遗传算法作为一种快捷、简便、容错性强的算法,在各类结构对象的优化过程中显示出明显的优势。与传统的搜索方法相比,遗传算法具有如下特点:
a)搜索过程不直接作用在变量上,而是在参数集进行了编码的个体。此编码操作,使得遗传算法可直接对结构对象(集合、序列、矩阵、树、图、链和表)进行操作。
b)搜索过程是从一组解迭代到另一组解,采用同时处理群体中多个个体的方法,降低了陷入局部最优解的可能性,并易于并行化。
c)采用概率的变迁规则来指导搜索方向,而不采用确定性搜索规则。
d)对搜索空间没有任何特殊要求(如连通性、凸性等),只利用适应性信息,不需要导数等其它辅助信息,适应范围更广。
术语说明 由于遗传算法是由进化论和遗传学机理而产生的搜索算法,所以在这个算法中会用到很多生物遗传学知识,下面是我们将会用来的一些术语说明:
染色体(Chronmosome)
染色体又可以叫做基因型个体(individuals),一定数量的个体组成了群体(population),群体中个体的数量叫做群体大小。
基因(Gene)
基因是串中的元素,基因用于表示个体的特征。例如有一个串S=1011,则其中的1,0,1,1这4个元素分别称为基因。它们的值称为等位基因(Allele)。
基因地点(Locus)
基因地点在算法中表示一个基因在串中的位置称为基因位置(Gene Position),有时也简称基因位。基因位置由串的左向右计算,例如在串 S=1101 中,0的基因位置是3。
基因特征值(Gene Feature)
在用串表示整数时,基因的特征值与二进制数的权一致;例如在串 S=1011 中,基因位置3中的1,它的基因特征值为2;基因位置1中的1,它的基因特征值为8。
适应度(Fitness)
各个个体对环境的适应程度叫做适应度(fitness)。为了体现染色体的适应能力,引入了对问题中的每一个染色体都能进行度量的函数,叫适应度函数. 这个函数是计算个体在群体中被使用的概率。
乙肝会遗传吗 经常听到有人说,某某人的乙肝是其父母遗传而得的,既没有办法治疗,也没有办法预防。这种说法实际上是部分人的一种误解,是没有任何科学根据的。要知道所谓遗传性疾病是由于父代或母代的基因缺陷或异常,由精子或卵子细胞将缺陷或异常基因传给子代而产生的疾病。而乙肝感染者没有任何基因的缺陷或异常,感染他人也不存在异常基因的参与,因此乙肝也就不属于遗传性疾病。
我们认为,这种说法实际上是对乙肝母婴传播的一种错误理解。乙肝的母婴传播是我国乙肝感染很主要的一种方式。前几年的统计资料显示,我国育龄妇女(25 ~35岁)血中HBsAg的携带率为7%左右,其中HBeAg阳性者占25%。HBeAg阳性母亲,如果不采取任何保护性措施的话,其分娩的婴儿成为HBsAg阳性的可能性在85%以上,而且这部分感染者可长期携带病毒,并且易发展为慢性乙型肝炎。许多家庭子女中出现数例乙肝,大多是由母婴传播所致。这个问题已经引起我国有关部门的极大重视,并采取了极为有效的预防性措施予以解决。随着乙肝疫苗和高效价抗乙肝免疫球蛋白的广泛应用,目前我国乙肝阳性母亲所生婴儿中HBsAg阳性率已下降至1%~2%。可见乙肝绝不像某些人所说的那样是无法预防的。我们相信,随着科技水平的发展和新药的研发,除预防外,乙肝的治疗也会有所突破的
声明:本站所有文章资源内容,如无特殊说明或标注,均为采集网络资源。如若本站内容侵犯了原著者的合法权益,可联系本站删除。